更多>>精华博文推荐
更多>>人气最旺专家

王茂孙

领域:华夏生活

介绍:一、质量安全“十严禁”红线条款规定,衬砌混凝土的强度、耐久性、耐腐蚀性、抗渗性及抗冻性必须符合设计要求。...

少康

领域:中国新闻采编网

介绍:由于仅蛋白质分子中含有S,而P几乎都存在于DNA中(搅拌的目的是使吸附在细利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新

利来国际w66.com
本站新公告利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新
l9z | 2019-01-16 | 阅读(401) | 评论(451)
试分析千泉的成因。【阅读全文】
利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新
ri0 | 2019-01-16 | 阅读(554) | 评论(64)
;;入廊管线:电力、通信、热力、给水四种管线。【阅读全文】
lhi | 2019-01-16 | 阅读(446) | 评论(889)
;考点二坚持辩证否定观树立创新意识;海尔的改革历程;1.海尔集团每一次的改革是否合理?为什么?2.现有的经营机制具有永恒的生命力吗?;(1)密切关注变化发展的实际,敢于突破与实际不相符合的成规陈说,敢于破除落后的思想观念。【阅读全文】
yl0 | 2019-01-16 | 阅读(838) | 评论(361)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
uqc | 2019-01-16 | 阅读(430) | 评论(463)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
9ua | 2019-01-15 | 阅读(16) | 评论(362)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
q9f | 2019-01-15 | 阅读(539) | 评论(412)
不得以非正当手段参与本活动,包括但不限于不符合本活动规则的规定、弄虚作假、蓄意扰乱本活动、散布未经证实的信息、使用病毒、实施网络攻击、阻挠其他用户参与活动、利用系统漏洞、实施违法行为等,一经发现,阿里巴巴有权终止其参与活动。【阅读全文】
pb9 | 2019-01-15 | 阅读(848) | 评论(951)
这次研修班的培训,我更意识到教育不应该是空中楼阁,它应该是立足于生活的。【阅读全文】
利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新,利来国际w66最新
l8a | 2019-01-15 | 阅读(657) | 评论(584)
你试试让他写篇很好的或者很有内涵和思想的个人总结,他写不出的。【阅读全文】
cd8 | 2019-01-14 | 阅读(561) | 评论(929)
两年三万元,少儿编程到底学些啥钱报记者调查杭城少儿编程培训热:你的孩子9岁才来学,已经晚了几乎所有培训机构都会提到对孩子升学有帮助,但事实真的如此吗?孩子们在体验编程课。【阅读全文】
zrn | 2019-01-14 | 阅读(888) | 评论(280)
望大家配合,以营造出一个优秀、和谐的班集体!清洁区负责人整改措施我的职位学习小组组长我的职责1、全面负责本小组的各项工作,督促本组成员共同搞好学习,促进本小组成员共同进步,营造积极的组内互动学习氛围;2、以身作责,多关心帮助本组成员;3、负责如实记载本组的操行成绩和家校联系册,不偏不倚,以实为据;4、负责收齐本组各科作业并按时上交科代表;我的总结1、小组内成员一些成绩跟不上;2、每天积累本上的字迹不工整;3、背书情况不理想;4、本组学习氛围不积极;5、本组的一些同学容易闹矛盾;我的措施1、在小组举行互帮互助计划,让学习成绩好的和不好的互相帮助;2、一次字迹不工整扣操行分05分,并且抄两遍;3、一次书未背,每扣1分,并交至班主任处处置;4、多增加一些外活动,是本组气氛活跃起;5、多对组员进行思想辅导,如果不听,每次扣1分;6、积极召开小组会议,不定期统计小组成员的成绩。【阅读全文】
dfh | 2019-01-14 | 阅读(321) | 评论(708)
望大家配合,以营造出一个优秀、和谐的班集体!第十一学习小组组长整改措施我的职位地理科代表我的职责1、了解全班同学对本学科的认识及学习情况,及时向班主任和科任教师汇报;2、组织好全班对本学科的学习经验的交流;3、组织开展评学评比教学活动,并向科任老师反映、汇报;4、组织各小组长搞好作业本的收法及记载的工作,并按时收发作业本,记载作业的完成情况。【阅读全文】
nuq | 2019-01-14 | 阅读(76) | 评论(503)
诗也不妨说理,但须有理趣,他的诗能够作到这一步。【阅读全文】
ryp | 2019-01-13 | 阅读(627) | 评论(364)
1998年~2018年本人在广州市东之俊服装有限司任服装设计,该司主要经营专业制服,对于我讲,制服设计又是另一个领域的挑战。【阅读全文】
z8i | 2019-01-13 | 阅读(754) | 评论(960)
严格来说文档内容本身不是纯粹的干净,无论是学术论文,还是文档内容本身,即使内容本身没有去抄袭文字本身,但是我们在写作文档内容的过程中,都或多或少、有意无意的引进别人先进思路,先进理念的地方。【阅读全文】
共5页

友情链接,当前时间:2019-01-16

利来国际是多少 w66利来guoji 利来国际 利来娱乐国际ag旗舰厅 利来国际备用
利来娱乐国际 利来最给利的网站 利来国际AGq旗舰厅 利来国际w66手机网页 利来国际w66手机版
利来老牌 w66利来国际手机app 利来娱乐帐户 利来国际手机版 利来国际w66手机网页
利来国际最老牌 老牌利来 利来国际w66 利来娱乐在线平台 利来国际w66平台
富裕县| 蓝田县| 穆棱市| 宜宾市| 新巴尔虎左旗| 锡林郭勒盟| 襄汾县| 阜城县| 温宿县| 滦南县| 浪卡子县| 安平县| 泰宁县| 通河县| 那坡县| 隆回县| 吉林市| 阿尔山市| 贵州省| 禄劝| 宁强县| 莫力| 崇左市| 聊城市| 平顺县| 涡阳县| 安龙县| 蒲城县| 井陉县| 乌拉特中旗| 宁乡县| 弥勒县| 屏东县| 板桥市| 曲周县| 太和县| 绥棱县| 东乡| 徐汇区| 囊谦县| 夏津县| http://m.92318406.cn http://m.54331611.cn http://m.14679306.cn http://m.01242510.cn http://m.54933044.cn http://m.44651623.cn